Effect of the salinity on the germination of cultivars of grains under conditions in vitro
DOI:
https://doi.org/10.5281/zenodo.15482219Keywords:
germination, cultivars, salinityAbstract
Context: The salinization of the soil now is since one of the most serious problems that faces the agriculture, it affects the production of foods significantly; for this reason it becomes necessary the study of tolerant cultivars to these conditions for their inclusion to the productive outlines of the country.
Objective: To select for their tolerance to the salinity, 14 cultivars de Tomato (Solanum lycopersicum L.)
Methods: It was studied under conditions in vitro the tolerance of 15 cultivars of grains in front of different concentrations of chloride of sodium (NaCl) (50 mm, 150 mm, 200 mm), for this end, it was determined: the germination percentage (PG) and the index of speed of germination (IVG) of the seeds as the index Maguire describes.
Results: Of the 14 tomato cultivars (Solanum lycopersicum L.) studied they were selected as promissory as for the germination percentage (PG) to concentrations of 50 mm of NaCl, the cultivars T60 and FL-5 without significant differences among them, with regard to the rest. The M-78 continues him, with 80-germinationpercentage to this concentration of salt, for what you/they constitute promissory materials to be used in agroecosystems affected by this condition. All they showed differences in the index of speed of germination of seeds. As for the index of germination speed (IVG) he/she stands out in the control T60 and M-78 in the witness without significant differences among them and to the 50 Mm, FL-5 and T60, M-78 and CV-28 continue him, without significant differences among this finish. El rest of the studied cultivars did not tolerate the studied ranges of salinity.
Conclusions: Of the 14 cultivars studied in the germination percentage (PG) to 50 mm of NaCl, they stand out the cultivars T60 and FL-5 with superior results without significant differences among them, with regard to the rest. The M-78 continues him, with 80-germinationpercentage to this concentration of salt, for what you/they propose as promissory to be used in agroecosystems affected by salinity.
Downloads
References
Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1), 597. https://doi.org/10.1186/S12870-021-03379-7
Abdel-Farid, I. B. Marghany, M.R., Rowezek, M.M., & Sheded, M.G. (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants, 9(11), 1626. https://doi.org/10.3390/plants9111626
Calvo-Polanco, M., Sánchez-Romera, B., Aroca, R., José Asins, M., Declerck, S., Dodd, I. C., Martínez-Andújar, C., Albacete, A., & Ruiz-Lozano, J. M. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environmental and Experimental Botany, 131, 47-57. https://doi.org/10.1016/j.envexpbot.2016.06.015
Casas, N., & Galvan, A.F. (2019). Eficiencia de las enmiendas orgánicas en la recuperación de suelos salinos en el distrito de San Vicente De Cañete – Lima. (Tesis presentada para optar el Título Profesional de Ingeniero Ambiental, Universidad Peruana Unión). Repositorio Institucional - Universidad Peruana Unión https://repositorio.upeu.edu.pe/server/api/core/bitstreams/e28baa76-c54b-49e1-803c-17b6e2f7ef0f/content
Courel, G.F. (2019). Guía de estudio. Suelos Salinos y Sódicos. Cátedra de Edafología. Facultad de Agronomía y Zootecnia. Universidad Nacional de Tucumán. https://www.studocu.com/es-ar/document/universidad-siglo-21/clima-y-suelo/suelos-salinos-y-sodicos-2019/38942169
Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S.D., Mishra, J., & Arora, N.K., (2019). Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontier Microbiology. 10, Article 2791. https://doi.org/10.3389/fmicb.2019.02791
Eitel, C. C. (2021). Efecto del estrés salino en la producción y calidad de semillas de tomate. (Tesis para optar al grado de Magister en Fisiología y Producción Vegetal). Pontificias Universidad Catóica de Chile. https://doi.org/10.7764/tesisUC/AGR/52676
Enríquez-Acosta E. A., Ruiz-Espinoza F. H., Carballo-Méndez F. de J., Beltrán-Morales F. A., Vázquez-Vázquez C., & García-Sánchez H. D. (2023). El silicio como mitigador a salinidad en las variables fisiológicas de germinación de tres variedades de Solanum lycopersicum. Revista Mexicana de Ciencias Agrícolas, 14 (1), 85-96. https://www.scielo.org.mx/pdf/remexca/v14n1/2007-0934-remexca-14-01-85.pdf
Florido Bacallao, M, & Bao Fundora, L. (2014). Tolerancia a estrés por déficit hídrico en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 35(3), 70-88. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000300008&lng=es&tlng=es
González, G. P., Suárez, N. T. & Marín, J. O. (2020). Effect of salinity and seed salt priming on the physiology of adult plants of Solanum Lycopersicum cv. ‘Río Grande’. Braz. J. Bot. 43(4), 775-787. https://doi.org/10.1007/s40415-020-00636-1
Hassani, A, Azapagic, A, & Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21 St century. Nature communications. 12(1), Article 6663. https://www.doi.org/10.1038/s41467-021-26907-3
İbrahimova, U., Kumari. P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Tahjib-Ul-Arif, M., Hussain, S., Abdelhamid, M., Hajihashemi, S., Yang, X., & Brestic, M. (2021). “Progress in Understanding Salt Stress Response in Plants Using Biotechnological Tools”, Journal of biotechnology. 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007
Maguire, J. D. (1962). Speed germination-aid in selection and evaluation for seedling emergence and 101 vigor, Crop Sci., Madison. 2, 176-177. http://dx.doi.org/10.2135/cropsci1962.0011183X000200020033x
Martínez Villavicencio, N., López Alonzo, C.V., Basurto-Sotelo, M., & Pérez Leal, R., (2020). Efectos por salinidad en el desarrollo vegetativo. Tecnociencia Chihuahua, 5(3), 156-161. https://www.studocu.com/es/document/universidad-de-cordoba-espana/fisiologia-vegetal-ambiental/efectos-por-salinidad-en-el-desarrollo-vegetativo/1156304
ONEI, (2021). Agricultura, ganadería y pesca. En Anuario Estadístico de Cuba. (Edición 2022). Oficina Nacional de Estadística e Información (ONEI). https://www.onei.gob.cu/sites/default/files/publicaciones/2023-04/aec-2021-edicion-2022_compressed.pdf
Ruiz, F.H., Villalpando, R. L., Murillo, B., Beltrán, F. A., & Hernández, L. G. (2014). Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra Latinoam, 32(4), 311-323. https://www.scielo.org.mx/pdf/tl/v32n4/2395-8030-tl-32-04-00311.pdf
Ruiz Sánchez, M., Muñoz Hernández, Y., Guzmán, D., Velázquez Rodríguez, R., Díaz López G.S., Martinez, A.Y., & Almaida, F.M. (2018). Efecto del calibre semilla (masa) en la germinación del sorgo. Cultivos Tropicales, 39(4), 51-59. http://scielo.sld.cu/pdf/ctr/v39n4/ctr07418.pdf
Saddiq, M.S., Afzal, I., Basra, S., Iqbal, S., & Ashraf, M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. J. Soil Sci. Plant Nutr., 20, 1442–1456. https://www.doi.org/10.1007/s42729-020-00224-y
Vieira Ferraz, M., Facincani Franco, C., Sales Batista, G., & Fernandes Lopes Pivettta, K. (2016). Salinity on the germination of seed and index of germination speed of three ornamental species. Ornamental Horticulture. 22(2), 196-201. https://www.doi.org/10.14295/oh.v22i2.919
Vila Pérez, O. L., & Moya Padilla, N.E. (2021). Las políticas públicas: una nueva mirada del envejecimiento poblacional en las condiciones actuales de Cuba. Revista Universidad y Sociedad, 13(3), 512-524. http://scielo.sld.cu/pdf/rus/v13n3/2218-3620-rus-13-03-512.pdf
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.