Modeling with AquaCrop of the optimal sowing date and water requirements of the dry bean crop (Phaseolus vulgaris L.)

Main Article Content

Yarisbel Gómez Masjuan
Norge Tornés Olivera
Oscar Nemesio Brown Manrique
Arnaldo Manuel Guerrero Alega
Gerardo Sánchez Aguilar

Abstract

Context: Phenology is perhaps the most important biological factor in irrigation programming. Although the stages of cultivation are defined in calendar days, their values ​​change depending on weather conditions. To make irrigation programming more precise, the degree day (°D) concept has been incorporated, which has proven to be a tool that can be applied both in plots and in large irrigation areas, even in variable climate and weather conditions of water availability.


Objective: The objective of the research was to determine, through modeling with AquaCrop, the optimal sowing date and irrigation needs of the common bean crop, using the concept of degree days.


Methods: For modeling with AquaCrop, the Buenaventura cultivar was used, which has a potential yield of 3,00 t ha-1 and is recommended for sowing from September to January, sowing dates with intervals of 10 days were used.


Results: Sowing dates can cause a difference of 16 days in the crop cycle. The optimal yield is obtained when the crop is sown on November 20, which can reach 3 t ha-1 and a cycle of 78 days.


Conclusions: It was found that, as a trend, yield decreases with the reduction of the crop cycle. The EUAR and PAR indicators are not optimal at the optimal planting date and are indicators that allow to management timely the irrigation system and represent the economic value of water in production.

Downloads

Download data is not yet available.

Article Details

Section

Agriculture Sustainability

How to Cite

Gómez Masjuan, Y., Tornés Olivera, N., Brown Manrique, O. N., Guerrero Alega, A. M., & Sánchez Aguilar, G. (2024). Modeling with AquaCrop of the optimal sowing date and water requirements of the dry bean crop (Phaseolus vulgaris L.). Agrisost, 30, 1-8. https://doi.org/10.5281/zenodo.10655272

References

Amberber, D. M., & Fantu, K. (2024). Impacts of climate variability on the vegetable production of urban farmers in the Addis Ababa metropolitan area: Nexus of climate-smart agricultural technologies. Climate Services, 33, 10043. https://doi.org/10.1016/j.cliser.2023.100430

Arivelarasan, T., Manivasagam, V. S., Geethalakshmi, V. Bhuvaneswari, K., Natarajan, K., Balasubramanian, M., Gwotham, R., & Muthurajan, R. (2023). How Far Will Climate Change Affect Future Food Security? An Inquiry into the Irrigated Rice System of Peninsular India. Agriculture, 13(551), 1-2. https://doi.org/10.3390/agriculture13030551

Barikara, U., Reddyb, K. S., Polisgowdarc, B. S., Maruthif, V., Satishkumarc, U., Ayyanagoudarc, M. S., Sathyanarayan, R., & Veereshe, H. (2022). Assessment of climate change impact on maize (Zea mays L.) through AquaCrop model in semi-arid alfisol of southern Telangana. Agricultural Water Management, 274, 10795. https://doi.org/10.1016/j.agwat.2022.107950

Bekchanova, M. (2024) Conveyance efficiency and irrigation water productivity under varying water supply conditions in arid lowlands of Central Asia. Agricultural Water anagement, 293, 108697. https://doi.org/10.1016/j.agwat.2024.108697

Boamaha, P. O., Onumah, J., Apam, B., Salifu T., Abunkudugu, A., A., & Alabil, S. A. (2024). Climate variability impact on crop evapotranspiration in the upper East region of Ghana Environmental Challenges, 14, 100828. https://doi.org/10.1016/j.envc.2023.100828

González-Robaina, F., López-Vargas, D., Cisneros-Zayas, E., Herrera-Puebla, J., & Cid-Lazo, G. (2019). Calibración y análisis de sensibilidad del modelo AquaCrop para frijol en suelo Ferralítico Rojo Compactado. Revista Ingeniería Agrícola, 9(4), 3-12. https://www.redalyc.org/articulo.oa?id=586262756001

Hernández-Jiménez, A., Pérez-Jiménez, J., Bosch-Infante, D., & Castro, N. (2015). Clasificación de los suelos de Cuba 2015. Ediciones INCA. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1504

Mengna, L., Shiwei, Zho., Shuaijie, S., Jiale, W., Yuhao, Y., Yangzhong, Wua., Fu, C., & Yongdeng, L. (2023). Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate. Agricultural Water Management, 292, 108663. https://doi.org/10.1016/j.agwat.2023.108663

Mompremier, R., Herb, Y., Hoogenbooma, G., Migliaccioa, K., Muñoz-Carpenaa, R., Brymd, Z., Colberte, R.W., & Jeunee, W. (2021). Modeling the response of dry bean yield to irrigation water availability controlled by watershed hydrology. Agricultural Water Management, 243, 106429. https://doi.org/10.1016/j.agwat.2020.106429

Nunes, H. G., Farias, V.D., Sousa, D.P., Costa, D.L., Pinto J.V., Moura V.B., Teixeira, E.O., Lima, M. J., Ortega, F. S., & Sousa. P. O. (2021). Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield. Agricultural Water Management, 252, 106880. https://doi.org/10.1016/j.agwat.2021.106880

ONEI. (2021). Agricultura, Ganadería, Silvicultura y Pesca. En Anuario Estadístico de Cuba 2020. (Capítulo 9, ed. 2021). Autor. https://www.onei.gob.cu/sites/default/files/publicaciones/2022-03/AEC%202020.pdf

Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2022). Chapter 3 calculation procedures. En AquaCrop Reference manual (Version 7.0). (pp. 1-175). FAO. https://www.fao.org/3/br248e/br248e.pdf

Raes, D., Fereres, E., García Vila, M., Curnel, Y., Knoded, D., Çelik, S. K., Ucar, Y., Türk, M., & Wellens, J. (2023). Simulation of alfalfa yield with AquaCrop. Agricultural Water Management, 284, 108341. https://doi.org/10.1016/j.agwat.2023.108341

Rodríguez-Pérez, E., Placeres-Miranda, Z., & Cisneros-Zayas, E. (2023). Necesidades hídricas del frijol para las condiciones de “Laguna Blanca”, Cuba. Revista Ingeniería Agrícola, 13(2), 10-15. https://www.redalyc.org/journal/5862/586275348002/586275348002.pdf

Ruiz, V., Sifuentes, E., Ojeda, W., & Macías, J. (2018). Adecuación de fechas de siembra por variabilidad climática en frijol (Phaseolus vulgaris L.) mediante AquaCrop, en Sinaloa”, En IV Congreso Nacional de Riego y Drenaje COMEII 2018. http://repositorio.imta.mx/handle/20.500.12013/2164

Sifuentes-Ibarra, E., Ojeda-Bustamante, W., Macías-Cervantes, J., Mendoza-Pérez, C., & Preciado-Rangel, P. (2021). Déficit hídrico en maíz al considerar fenología, efecto en rendimiento y eficiencia en el uso del agua. Agrociencia, 55(3), 209-226. https://agrociencia-colpos.org/index.php/agrociencia/article/view/2414/2057

Stricevic, R., Lipovac, A., Djurovic, N., Sotonica, D., & Cosic, M. (2023). AquaCrop Model Performance in Yield, Biomass, and Water Requirement Simulations of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Horticulturae, 9(4), 507. https://doi.org/10.3390/horticulturae9040507

Tornés, N., Brown, O., Gómez, Y., & Guerrero, A. M. (2016). Evaluación del modelo AquaCrop en la simulación del crecimiento del cultivo del frijol. Revista Ciencias Técnicas Agropecuarias, 25(3), 23-30. http://scielo.sld.cu/pdf/rcta/v25n3/rcta03316.pdf

Tornés, N., Gómez, Y., Boicet, T., & Brown, O. (2021). Evaluación del modelo AquaCrop en condiciones de riego óptimo y deficitario en Phaseolus vulgaris L. Centro Agrícola, 48(2), 37-46. http://scielo.sld.cu/pdf/cag/v48n2/0253-5785-cag-48-02-37.pdf

Zhang, R. Zhu, M., Yehia Mady, A., Huang, M., Yan, X., & Guo, T. (2024). Effects of different long-term fertilization and cropping systems on crop yield, water balance components and water productivity in dryland farming. Agricultural Water Management, 292(2024), 108689. https://doi.org/10.1016/j.agwat.2024.108689

Zhang, T., Zuo, Q., Ma, N., Shi, J., Fan, Y., Wu, X., Wang, L., Xue, X., & Ben-Gal, A. (2023). Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop. Agricultural Water Management 286, 108391. https://doi.org/10.1016/j.agwat.2023.108391

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)