Behavior of Cuban Tomato Cultivars (Solanum lycopersicum L.) under Different Salinity Conditions
DOI:
https://doi.org/10.5281/zenodo.17701427Keywords:
germination, cultivars, salinityAbstract
Context: Soil salinization is currently one of the most serious problems facing agriculture, as it significantly affects food production; for this reason, it is necessary to study cultivars that are tolerant to these conditions for their inclusion in the country's production schemes.
Aim: To select 14 tomato cultivars (Solanum lycopersicum L.), based on their tolerance to salinity.
Methods: The tolerance of 14 tomato cultivars to different concentrations of sodium chloride (NaCl) (50 mM, 150 mM, 200 mM) was studied under in vitro conditions. For this purpose, the germination percentage (GP) and the germination rate index (GRI) of the seeds were determined, as described by the Maguire index.
Results: Among the 14 tomato cultivars (Solanum lycopersicum L.) studied, T60 and FL-5 were selected as promising in terms of germination percentage (GP) at a concentration of 50 mM NaCl, with no significant differences between them compared to the others. It was followed by M-78, with an 80% germination rate at this salt concentration, making it a promising material for use in agroecosystems affected by this condition. All of them showed differences in the seed germination rate index. Regarding the germination rate index (GRI), T60 and M-78 stood out in the control group, with no significant differences between them. At 50 mM, FL-5 led, followed by T60, M-78, and CV-28, with no significant differences among the latter. The remaining cultivars studied did not tolerate the salinity levels evaluated.
Conclusions: Among the 14 cultivars studied for germination percentage (GP) at 50 mM NaCl, the T60 and FL-5 cultivars stood out with superior results, showing no significant differences between them compared to the others. M-78 follows, with an 80% germination rate at this salt concentration, making it a promising candidate for use in agroecosystems affected by salinity.
Downloads
References
Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1), 597. https://doi.org/10.1186/S12870-021-03379-7
Abdel-Farid, I. B. Marghany, M.R., Rowezek, M.M., & Sheded, M.G. (2020). Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants, 9(11), 1626. https://doi.org/10.3390/plants9111626
Calvo-Polanco, M., Sánchez-Romera, B., Aroca, R., José Asins, M., Declerck, S., Dodd, I. C., Martínez-Andújar, C., Albacete, A., & Ruiz-Lozano, J. M. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environmental and Experimental Botany, 131, 47-57. https://doi.org/10.1016/j.envexpbot.2016.06.015
Casas, N., & Galvan, A.F. (2019). Eficiencia de las enmiendas orgánicas en la recuperación de suelos salinos en el distrito de San Vicente De Cañete – Lima. (Tesis presentada para optar el Título Profesional de Ingeniero Ambiental, Universidad Peruana Unión). Repositorio Institucional - Universidad Peruana Unión https://repositorio.upeu.edu.pe/server/api/core/bitstreams/e28baa76-c54b-49e1-803c-17b6e2f7ef0f/content
Courel, G.F. (2019). Guía de estudio. Suelos Salinos y Sódicos. Cátedra de Edafología. Facultad de Agronomía y Zootecnia. Universidad Nacional de Tucumán. https://www.studocu.com/es-ar/document/universidad-siglo-21/clima-y-suelo/suelos-salinos-y-sodicos-2019/38942169
Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S.D., Mishra, J., & Arora, N.K., (2019). Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontier Microbiology. 10, Article 2791. https://doi.org/10.3389/fmicb.2019.02791
Eitel, C. C. (2021). Efecto del estrés salino en la producción y calidad de semillas de tomate. (Tesis para optar al grado de Magister en Fisiología y Producción Vegetal). Pontificias Universidad Catóica de Chile. https://doi.org/10.7764/tesisUC/AGR/52676
Enríquez-Acosta E. A., Ruiz-Espinoza F. H., Carballo-Méndez F. de J., Beltrán-Morales F. A., Vázquez-Vázquez C., & García-Sánchez H. D. (2023). El silicio como mitigador a salinidad en las variables fisiológicas de germinación de tres variedades de Solanum lycopersicum. Revista Mexicana de Ciencias Agrícolas, 14 (1), 85-96. https://www.scielo.org.mx/pdf/remexca/v14n1/2007-0934-remexca-14-01-85.pdf
Florido Bacallao, M, & Bao Fundora, L. (2014). Tolerancia a estrés por déficit hídrico en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 35(3), 70-88. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000300008&lng=es&tlng=es
González, G. P., Suárez, N. T. & Marín, J. O. (2020). Effect of salinity and seed salt priming on the physiology of adult plants of Solanum Lycopersicum cv. ‘Río Grande’. Braz. J. Bot. 43(4), 775-787. https://doi.org/10.1007/s40415-020-00636-1
Hassani, A, Azapagic, A, & Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21 St century. Nature communications. 12(1), Article 6663. https://www.doi.org/10.1038/s41467-021-26907-3
İbrahimova, U., Kumari. P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Tahjib-Ul-Arif, M., Hussain, S., Abdelhamid, M., Hajihashemi, S., Yang, X., & Brestic, M. (2021). “Progress in Understanding Salt Stress Response in Plants Using Biotechnological Tools”, Journal of biotechnology. 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007
Maguire, J. D. (1962). Speed germination-aid in selection and evaluation for seedling emergence and 101 vigor, Crop Sci., Madison. 2, 176-177. http://dx.doi.org/10.2135/cropsci1962.0011183X000200020033x
Martínez Villavicencio, N., López Alonzo, C.V., Basurto-Sotelo, M., & Pérez Leal, R., (2020). Efectos por salinidad en el desarrollo vegetativo. Tecnociencia Chihuahua, 5(3), 156-161. https://www.studocu.com/es/document/universidad-de-cordoba-espana/fisiologia-vegetal-ambiental/efectos-por-salinidad-en-el-desarrollo-vegetativo/1156304
ONEI, (2021). Agricultura, ganadería y pesca. En Anuario Estadístico de Cuba. (Edición 2022). Oficina Nacional de Estadística e Información (ONEI). https://www.onei.gob.cu/sites/default/files/publicaciones/2023-04/aec-2021-edicion-2022_compressed.pdf
Ruiz, F.H., Villalpando, R. L., Murillo, B., Beltrán, F. A., & Hernández, L. G. (2014). Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra Latinoam, 32(4), 311-323. https://www.scielo.org.mx/pdf/tl/v32n4/2395-8030-tl-32-04-00311.pdf
Ruiz Sánchez, M., Muñoz Hernández, Y., Guzmán, D., Velázquez Rodríguez, R., Díaz López G.S., Martinez, A.Y., & Almaida, F.M. (2018). Efecto del calibre semilla (masa) en la germinación del sorgo. Cultivos Tropicales, 39(4), 51-59. http://scielo.sld.cu/pdf/ctr/v39n4/ctr07418.pdf
Saddiq, M.S., Afzal, I., Basra, S., Iqbal, S., & Ashraf, M. (2020). Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. J. Soil Sci. Plant Nutr., 20, 1442–1456. https://www.doi.org/10.1007/s42729-020-00224-y
Vieira Ferraz, M., Facincani Franco, C., Sales Batista, G., & Fernandes Lopes Pivettta, K. (2016). Salinity on the germination of seed and index of germination speed of three ornamental species. Ornamental Horticulture. 22(2), 196-201. https://www.doi.org/10.14295/oh.v22i2.919
Vila Pérez, O. L., & Moya Padilla, N.E. (2021). Las políticas públicas: una nueva mirada del envejecimiento poblacional en las condiciones actuales de Cuba. Revista Universidad y Sociedad, 13(3), 512-524. http://scielo.sld.cu/pdf/rus/v13n3/2218-3620-rus-13-03-512.pdf
Downloads
Published
Versions
- 2025-01-10 (2)
- 2025-01-10 (1)
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.





