Plant growth promoting potential of Azotobacter strains isolated to the Cuban agroecosystem
DOI:
https://doi.org/10.5281/zenodo.14825996Keywords:
management, microorganism, productAbstract
Context: The Azotobacter genus is used to stimulate the growth of economically important crops. To know the native strains' potential can permit better use of the bacteria as active ingredient of bioproducts for Cuban agriculture.
Objective: To characterize as plant growth promoting to three Azotobacter strains isolated from Cuban agroecosystems.
Methods: Azotobacter strains INIFAT-12, INIFAT-20 and INIFAT-21, keep on INIFAT Bacteria Collection, where characterized by its abiotic stress tolerance, potential to fix nitrogen, to solubilize nutrients, produce lithic enzyme, its action against pathogen fungi and the effect of its application over common bean, wheat and tomato on controlled conditions.
Results: The growth of three Azotobacter strains decreases under stress conditions, although they always show a positive result that suggests some tolerance mechanism. All the strains fix nitrogen and release protease and lipase enzymes, but none of them solubilize nutrients and also release cellulose enzymes. Only INIFAT-20 strain release amylase enzymes. The antagonist activity was similar against to Curvularia palense, but for Fusarium chlamydosporum was better INIFAT-20 strain. The bacteria application had a positive effect in growth of common bean, wheat and tomato plants.
Conclusions: Azotobacter strains resident in Cuban agroecosystems have potential to be used as plants growth promoting, that is why this a promising genus to obtain new agricultural bioproducts in Cuba.
Downloads
References
Alcarraz, M., Gonzales, E., & Heredia, V. (2020). Azotobacter y Rhizobium como biofertilizantes naturales en semillas y plantas de frijol caupí. Avances, 22(2), 239-251. http://www.ciget.pinar.cu/ojs/index.php/publicaciones/article/view/538/1610.
Beleño-Carrillo, J., Gómez-Gómez, L., & Valero-Valero, N.O. (2022). Bacillus mycoides y ácidos húmicos como bioestimulantes de fríjol caupí bajo estrés por salinidad. Rev. U.D.C.A Act. & Div. Cient, 25(2), e1974. http://doi.org/10.31910/rudca.v25.n2.2022.1974
Bertini, E.V., Leguina, A. C. V., Castellanos, L. I., & Nieto, C.G. (2016). Caracterización de bacterias endofíticas de caña de azúcar productoras de N‐acil homoserina lactonas. Archivos de Bioquímica Química y Farmacia, 15(1), 5-19.
Blanco, E.L., & Castro, Y. (2021). Antagonismo de rizobacterias sobre hongos fitopatógenos, y su actividad microbiana en el potencial biofertilizante, bioestimulante y biocontrolador. Revista Colombiana de Biotecnología, 23 (1), 6-16. https://doi.org/10.15446/rev.colomb.biote.v23n1.84808
Cesa-Luna C, Baez A, Quintero-Hernández V, Cruz-Enríquez J. D. L, Castañeda-Antonio M. D., & Muñoz-Rojas, J. (2020). The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biológica Colombiana, 25 (1), 140-154. https://doi.org/10.15446/abc.v25n1.76867
Chávez-Díaz, I.F., Zelaya, L.X., Cruz, C.I., Rojas, E., Ruíz, S., & de los Santos, S. (2020). Consideraciones sobre el uso de biofertilizantes como alternativa agro-biotecnológica sostenible para la seguridad alimentaria en México. Revista Mexicana Ciencias Agrícolas, 11 (6), 1423-1436. https://doi.org/10.29312/remexca.V9i4.1389
Cruz Cárdenas, C.I., Zelaya-Molina, L. X., Chávez-Díaz. I.F., Rojas-Anaya, E., & Arteaga-Garibay, R.I. (2021). Conservación de cepas microbianas para biofertilizantes. Libro teórico. (No. 02). Centro Nacional de Recursos Genéticos. Tepatitlán de Morelos. Jal. México.
Dirección de Suelos y Fertilizantes (2021). Listado Oficial de Fertilizantes Autorizados. Registro Central de Fertilizantes.
Harrigan, W.F., & M. Mc. Cance. (1968). Métodos de Laboratorio de Microbiología. Ed. Academia, España.
Huamán-Castilla, N. L., Allcca-Alca, E. E., Allcca-Alca, G. J., & Quispe-Pérez, M. L. (2021). Biopolímeros producidos por Azotobacter: síntesis y producción, propiedades físico-mecánicas, y potenciales aplicaciones industriales. Scientia Agropecuaria, 12(3), 369-377. https://dx.doi.org/10.17268/sci.agropecu.2021.040
Ibarra, J.A., Llica, W.R., & Lazo, R.S. (2021). Determinación de la influencia de Azotobacter nativos en cultivos de Raphanus sativus como biofertilizante. Ingeniería investiga, 3(1), 579-590. https://doi.org/10.47796/ing.v3i1.482
Martínez, R. & Dibut, B. (2012). Biofertilizantes Bacterianos. Editorial Científico-Técnica. Instituto Cubano del Libro.
Martínez, V. R., López, M., Brossard, F. M., Tejeda, G. G., Pereira, A. H., Parra, Z. C., Rodríguez, S. J., & Alba, A. (2006). Procedimientos para el estudio y fabricación de Biofertilizantes Bacterianos. (Serie B, No. 11). Ed. INIA - Maracay.
Nautiyal, S. C. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganism. FEMS Microbiology Letters, 170, 265-275.
Ortiz, Y., Ríos, Y., Aguado, Y., Rodríguez, L.C., Lorenzo, Y., Deliz, L., Álvarez, M.E., Rodríguez, J., Zulueta, I., & Fresneda, J.A. (2021). Selección de cepas bacterianas con potencial estimulador del crecimiento vegetal en Phaseolus vulgaris L. (cv. 'Lewa'). Agrotecnia de Cuba, 45(1), 42 – 58.
Pavone, D. (2022). Azotobacter en la agricultura: Una bacteria biofertilizante que protege a las plantas. TecnoVita. https://tecnovitaca.com/wp-content/uploads/2022/12/Azotobacter.pdf
Pérez-Cordero, A., Tuberquia-Sierra, A., & Amell-Jiménez, D. (2014). Actividad in vitro de bacterias endófitas fijadores de nitrógeno y solubilizadores de fosfato. Agronomía Mesoamericana, 25(2), 213-223. https://www.scielo.sa.cr/pdf/am/v25n2/a01v25n2.pdf
Pilatuña, M.F., González, M.M., Mero, M.E. & Risco, D. (2021). Evaluación agronómica de bacterias fijadoras de nitrógeno aisladas de suelos andinos en plántulas de lechuga y tomate. Investig. Agrar, 23(1), 47-52. http://dx.doi.org/10.18004/investig.agrar.2021.junio.2301680.
Sánchez-Yánez, J. M., Velázquez-Medina, A., Cabrera-Reinaldo, I., Amador-Vargas, W.L.., & Vela-Muzquiz, G. R. (2022). Supervivencia de Azotobacter y otros grupos microbianos en suelo seco almacenado. Journal of the Selva Andina Research Society, 13(1), 3-15. https://doi.org/10.36610/j.jsars.2022.130100003
Sule, I.O., Agbabiaka, T.O., Saliu B.K., Ajijolakewu K.A., & Zakariyah R.F. (2023). Assessment of the potentials of Azotobacter spp. as bioinoculants on the growth of potted maize plants. Science World Journal, 18(2), 276-282. https://dx.doi.org/10.4314/swj.v18i2.16.
Sumbul, A., Ali Ansari, R., Rizvi, R., & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27, 3634-3640. https://doi.org/10.1016/j.sjbs.2020.08.004
Vera Loor, M., Bernal, A., Vera, D., Leiva, M., Rivero, A., & Agustín, A. (2020). Antagonismo in vitro de bacterias endófitas formadoras de endosporas frente a Moniliophthora roreri H.C Evans. Revista de Protección Vegetal, 35(2), 8.
Zavala, J., Alcarraz, M., & Julian, J. (2020). Evaluación para la producción de Azotobacter sp. promotor de crecimiento para cultivos de Coffea arabica. Ciencia e Investigación, 23(1), 45-50. http://dx.doi.org/10.15381/ci.v23i1.18751
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes .
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.