Germination response of Phaseolus vulgaris var. Velazco under salt stress conditions

Authors

  • Maryla Sosa del Castillo Universidad de Matanzas, Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Cuba.
  • Iris Mercedes Pintado Álvarez Universidad de Matanzas, Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Cuba.
  • Conrado Camacho Campos Universidad de Matanzas, Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Cuba.
  • Yordanys Martínez Dávalos Universidad de Matanzas, Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Cuba.
  • Daynet Sosa del Castillo Escuela Superior Politécnica del Litoral, SPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador.
  • Yunel Pérez Hernández Universidad de Matanzas, Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Cuba.

DOI:

https://doi.org/10.5281/zenodo.18404172

Keywords:

biochemistry, common beans, reducing sugar, salinity

Abstract

Context: Soil salinity is one of the most important abiotic stresses that affect growth and development of crops, especially during the germination stage where seedling is more vulnerable.

Aim: The aim of the present work was to evaluate the response of Phaseolus vulgaris L. var. velazco during the germination process under saline stress conditions.

Methods: Seeds were placed in Petri dishes with different solutions of sodium chloride (0-200 mmol L-1) for seven days. The percentage and value of germination, length of root and hypocotyl, number of secondary roots, fresh and dry weight of roots and hypocotyls, as well as content of total soluble proteins and reducing sugars were evaluated. A randomized completely design was performance with four replications.

Results: The high concentrations of sodium chloride affected the percentage of germination, length of root and hypocotyl and germination speed. Based on fresh and dry matter content, the aerial part showed a higher susceptibility to salt stress in comparison with the roots. The concentration of reducing sugar in the treatments 150, 175 and 200 mmol L-1 NaCl was higher than the control, whereas the higher values of soluble proteins were obtained in 75 and 100 mmol L-1 NaCl.

Conclusions: The results indicated the presence of possible mechanisms of osmoprotection to reduce the negative effect of saline stress on germination and early growth stages of plantlets, and to maintain the functioning of metabolic processes and cellular homeostasia.

Downloads

Download data is not yet available.

References

Akhiyarova, G., Veselov, D., Ivanov, R., Sharipova, G., Ivanov, I., Dodd, I.C., & Kudoyarova, G. (2023). Root ABA accumulation delays lateral root emergence in osmotically stressed barley plants by decreasing root primordial IAA accumulation. Int. J. Plant Biol. 14, 77–90. https://doi.org/10.3390/ijpb14010007

Al-huraby, A.I., & Bafeel, S.O. (2022). The effect of salinity stress on the Phaseolus vulgaris L. plant. African Journal of Biological Sciences, 4(1), 94-107. https://doi.org/10.33472/AFJBS.4.1.2021.94-107

Anwar, A., & Kim, J.K. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences, 21, 2695, 1-29. https://doi.org/10.3390/ijms21082695

Anwar, A., Zhang, S., He, L., & Gao, J. (2022). Understanding the physiological and molecular mechanism of salinity stress tolerance in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12959. https://doi.org/10.15835/nbha50312959

Aslam, M.T., Khan, I., Chattha, M.U., Maqbool, R., Ziaulhaq, M., Lihong, W., Usman, S., Rasheed, A., Hassan, M.U., Hashem, M., Rehab, O., Elnour, R.O., Iqbal, M.M., & Arshad, M. (2023). The critical role of nitrogen in plants facing the salinity stress: Review and future prospective and future prospective and future prospective and future prospective. Notulae Botanicae Horti Agrobotanici Cluj-Napoca journal, 51(3), 1-37. https://doi.org/10.15835/nbha51313347

Bagum, S.A., Billah, M., Hossain, N., Aktar, S., & Uddin, M.S. (2017). Detection of salt tolerant hybrid maize as germination indices and seedling growth performance. Bulg. J. Agric. Sci., 23(5), 793–798. https://www.agrojournal.org/23/05-16.pdf

Bano, S., Iqbal, S., Naqvi, B., Abbasi, K., Siddiqui, K., Sattar, H., & Aman, A. (2021). Antioxidant enzymes and germination pattern: upshot of high salinity on soluble protein and average weight of Spinacia oleracea (spinach) seedlings. Asian Food Science Journal, 20(3), 112-122. https://doi.org/10.9734/afsj/2021/v20i330283

Blaha, G., Stelzl, U., Spahn, C.M., Agrawal, R.K., Frank, J., & Nierhaus, K.H. (2000). Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol., 317, 292–309. https://doi.org/10.1016/S0076-6879(00)17021-1

Can-Chulim, A., Cruz-Crespo, E., Ortega-Escobar, H.M., Sánchez-Bernal, E.I., Madueño-Molina, A., Bojórquez-Serrano, J.I., & Mancilla-Villa, O.R. (2017). Respuesta de Phaseolus vulgaris a la salinidad generada por NaCl, Na2SO4 y NaHCO3. Revista Mexicana de Ciencias Agrícolas, 8(6), 1287-1300. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342017000601287

Cavusoglu, A. (2023). Salinity stress as an abiotic factor at germination stage on dry bean (Phaseolus vulgaris L.) cultivars. Current Trends in Natural Sciences, 12(23), 17-27. https://doi.org/10.47068/ctns.2023.v12i23.002

Ceritoğlu, M., Erman, M., & Yildiz, F. (2020). Effect of salinity on germination and some agro-morphological traits in chickpea seedlings. ISPEC Journal of Agricultural Sciences, 4, 82-96. https://doi.org/10.46291/ISPECJASvol4iss1pp82-96

Chaín, J.M., & Causin, H.F. (2018). Germinability and antioxidant metabolism in Passiflora caerulea L. seeds exposed to salt stress. Rev. Mus. Argentino Cienc. Nat., 20(1), 23-34. https://revista.macn.gob.ar/index.php/RevMus/article/view/563/479

Das, S.K., & Rafiqul-Islam, A.T.M. (2018). Effects of salinity on germination and seedling growth of lentil (Lens culinaris Medik) varieties in Bangladesh. Barishal University Journal Part 1, 5(1-2), 141-151. https://www.researchgate.net/publication/338254711_EFFECTS_OF_SALINITY_ON_GERMINATION_AND_SEEDLING_GROWTH_OF_LENTIL_LENS_CULINARIS_MEDIK_VARIETIES_IN_BANGLADESH

Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Cardenas, S. & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10, 859. https://doi.org/10.3390/agronomy10060859

Djavanshir, K., & Pourbeik, H. (1976). Germination value-a new formula. Silvae Genetica, 25, 79-83. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1976/Vol._25_Heft_2/25_2_79.pdf

Ehtaiwwesh, A.F., & Emsahel, M. J. (2020). Impact of salinity stress on germination and growth of pea (Pisum sativum L.) plants. Al-Mukhtar Journal of Sciences, 35(2), 146-159. https://doi.org/10.54172/mjsc.v35i2.319

El-Badri, A.M., Batool, M., Mohamed, I., Wang, Z., Khatab, A., Sherif, A., Ahmad, H., Khan, M.N., Hassan, H.M., Elrewainy, I.M., Kuai, J., Zhou, G., & Wang, B. (2021). Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants, 10(8), 1227. https://doi.org/10.3390/antiox10081227

El-Bastawisy, Z.M., El-Katony, T.M., & El-Fatah, S.N.A. (2018). Genotypic variability in salt tolerance of Vicia faba during germination and early seedling growth. Journal of King Saud University – Science, 30(2), 270–277. https://doi.org/10.1016/j.jksus.2017.04.004

Gu, M.F., Li, N., Long, X.H., Brestic, M., Shao, H.B., Li, J., & Mbarki, S. (2016). Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environment, 62(7), 314–320. https://doi.org/10.17221/771/2015-PSE

Gupta, A., Rai, S., Bano, A., Khanam, A., Sharma, V., & Pathak, V. (2021). Comparative evaluation of different salt-tolerant plant growth-promoting bacterial isolates in mitigating the induced adverse effect of salinity in Pisum sativum. Biointerface Res. Appl. Chem., 11(5), 13141–13154. https://doi.org/10.33263/BRIAC115.1314113154

Harris, M., Krizaj, C., Ventura, F., & Frezza, D. (2023). Crecimiento e indicadores de tolerancia a la salinidad de verdolaga de invierno (Claytonia perfoliata Donn ex Willd.). Chilean J. Agric. Anim. Sci., ex Agro-Ciencia, 39(1), 45-64. https://doi.org/10.29393/CHJAA39-5CIMD40005

Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants, 10(845), 1-14. https://doi.org/10.3390/plants10050845

Ibrahim, M.H., Abas, N.A., & Zahra, S.M. (2019). Impact of salinity stress on germination of water spinach (Ipomoea aquatica). Annual Research & Review in Biology, 31(5), 1-12. https://doi.org/10.9734/ARRB/2019/v31i530060

International Seed Testing Association (ISTA). (2010). International rules for seed testing, Seed vigor testing. Chapter 15, 1–57.

Kaur, H., Bhardwaj, R.D., & Grewal, S.K. (2017). Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol. Plant., 39, 221. https://doi.org/10.1007/s11738-017-2521-7

Liu, Y., & von Wirén, N. (2022). Integration of nutrient and water availabilities via auxin into the root developmental program. Curr. Opin. Plant Biol. 65, 102117. https://doi.org/10.1016/j.pbi.2021.102117

Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R. (1951). Protein measurement the Folinphenol reagent. J Biol Chem., 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Mbarki, S., Skalicky, M., Vachova, P., Hajihashemi, S., Jouini, L., Zivcak, M., Tlustos, P., Brestic, M., Hejnak, V., & Khelil, A.Z. (2020). Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants, 9, 526. https://doi.org/10.3390/plants9040526

Mena, E., Leiva, M., Dilhara, E., García, L., Veitía, N., & Cárdenas, R. (2015). Efecto del estrés salino en la germinación y el crecimiento temprano de (Phaseolus vulgaris L). Cultivos Tropicales, 36(3), 71-74. https://doi.org/10.13140/RG.2.2.24818.09923

Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426-428. https://doi.org/10.1021/ac60147a030

Murillo, O. (1998). Variación en parámetros de germinación de una población natural de Alnus acuminata de Guatemala. Boletín Mejoramiento Genético y Semillas Forestales, 19, 4-8. https://repositorio.catie.ac.cr/bitstream/handle/11554/6916/A7182e.pdf?sequence=1

Navyashree, R., Ashvathama, V.H., Kiran, B.O., Rashmi, K., & Spoorthy, V.C. (2023). Effect of salinity stress on seed germination and seedling vigour index in chickpea genotypes. The Pharma Innovation Journal, 12(2), 2219-2223. https://www.thepharmajournal.com/archives/2023/vol12issue2/PartAA/12-2-188-788.pdf

Öner, F., & Kirli, A. (2018). Effects of salt stress on germination and seedling growth of different bread wheat (Triticum aestivum L.) cultivars. Akademik Ziraat Dergisi, 7(2), 191-196. https://doi.org/10.29278/azd.476365

Parida, A., Das, A.B., & Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45, 28-36. https://doi.org/10.1007/BF03030429

Polash, M.A.S., Sakil, M.A., & Hossain, M.A. (2019) Plants responses and their physiological and biochemical defense mechanisms against salinity: A review. Tropical Plant Research, 6 (2), 250–274. https://www.tropicalplantresearch.com/archives/2019/vol6issue2/35.pdf

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R.A., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A. review: Impact of salinity on plant growth. Nat. Sci., 17, 34–40. https://doi.org/10.7537/marsnsj170119.06

Sagar, A., Tajkia, J.E., Haque, M.E., Fakir, M.S.A., & Hossain, A.K.M.Z. (2019). Screening of sorghum genotypes for salt-tolerance based on seed germination and seedling stage. Fundamental and Applied Agriculture, 4(1), 735–743. https://doi.org/10.5455/faa.18483

Sami, F., Yusuf, M., Faizan, M., Faraz, A., & Hayat, S. (2016). Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109, 54-61. https://doi.org/10.1016/j.plaphy.2016.09.005

Sen, T.T.H., Nhi, P.T.P., & Sen, T.T. (2017). Salinity effect at seedling and flowering stages of some rice lines and varieties (Oryza sativa L.). Journal of Agricultural Science and Technology A and B & Hue University Journal of Science, 7, 32-39. https://doi.org/10.17265/2161-6256/2017.10.005S

Shtaya, M.J.Y., Al-Fares, H., Qubbaj, T., Abu-Qaoud, H., & Shraim, F. (2021). Influence of salt stress on seed germination and agromorphological traits in chickpea (Cicer arietinum L.). Legume Research, 44(12), 1455-1459. https://doi.org/10.18805/LR-633

Singh, M., Singh, A.K., Nehal, N., & Sharma, N. (2018). Effect of proline on germination and seedling growth of rice (Oryza sativa L.) under salt stress. Journal of Pharmacognosy and Phytochemistry, 7(1), 2449-2452. https://www.phytojournal.com/archives/2018/vol7issue1/PartAH/6-6-466-406.pdf

Sun, J., He, L., & Li, T. (2019). Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE 14(7), e0220340. https://doi.org/10.1371/journal.pone.0220340

Sun, L.J., Zhou, J.J., Pan, J.L., Liang, Y.Y., Fang, Z.J., Xie, Y., Yang, H., Gu, H.Y., & Bao, N. (2018). Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity. Sensors and Actuators B: Chemical, 276, 545-551. https://doi.org/10.1016/j.snb.2018.08.152

Sun, Y., Liang, W., Cheng, H., Wang, H., Lv, D., Wang, W., Liang, M., & Miao, C. (2021). NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in Arabidopsis root cells. Plant Signalling and Behaviour, 16(3), Art. 1856546. https://doi.org/10.1080/15592324.2020.1856546

Taiz, L., & Zeiger, E. (2010). Plant Physiology. (4th Ed.). Sinauer, Sunderland, M. A.

Wang, D., Gao, Y., Sun, S., Lu, X., Li, Q., Li, L., Wang, K., & Liu, J. (2022). Effects of Salt Stress on the Antioxidant Activity and Malondialdehyde, Solution Protein, Proline, and Chlorophyll Contents of Three Malus Species. Life. 12(11), 1929. https://doi.org/10.3390/life12111929

Xiong, L., & Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 25(2), 131–139. https://doi.org/10.1046/j.1365-3040.2002.00782.x

Yadav, M., Upadhyay, S. K., Singh, R., Kumar, S., Sharma, A.K., Bala, S., Rani, K., & Sehrawat, N. (2021). Effects of salinity stress on seedling growth of local varieties of faba bean (Vicia faba L.) from India. Plant Archives, 21(Supl. 1), 253 - 259. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.042

Yu, S., Yu, L., Hou, Y., Zhang, Y., Guo, W., & Xue, Y. (2019). Contrasting effects of NaCl and NaHCO3 stresses on seed germination, seedling growth, photosynthesis, and osmoregulators of the common bean (Phaseolus vulgaris L.). Agronomy, 9(8), 409. https://doi.org/10.3390/agronomy9080409

Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 1-16. https://doi.org/10.3390/ijms22094609

Downloads

Published

2025-12-16

Issue

Section

Agriculture Sustainability

How to Cite

Sosa del Castillo, M., Pintado Álvarez, I. M., Camacho Campos, C., Martínez Dávalos, Y., Sosa del Castillo, D., & Pérez Hernández, Y. (2025). Germination response of Phaseolus vulgaris var. Velazco under salt stress conditions. Agrisost, 31, 1-10. https://doi.org/10.5281/zenodo.18404172